Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach
نویسندگان
چکیده
In this paper we consider cardinality-constrained convex programs that minimize a convex function subject to a cardinality constraint and other linear constraints. This class of problems has found many applications, including portfolio selection, subset selection and compressed sensing. We propose a successive convex approximation method for this class of problems in which the cardinality function is first approximated by a piecewise linear DC function (difference of two convex functions) and a sequence of convex subproblems is then constructed by successively linearizing the concave terms of the DC function. Under some mild assumptions, we establish that any accumulation point of the sequence generated by the method is a KKT point of the DC approximation problem. We show that the basic algorithm can be refined by adding strengthening cuts in the subproblems. Finally, we report some preliminary computational results on cardinality-constrained portfolio selection problems.
منابع مشابه
Successive Convex Approximations to Cardinality-Constrained Quadratic Programs: A DC Approach
Cardinality-Constrained Quadratic Programs: A DC Approach Xiaojin Zheng School of Economics and Management, Tongji University, Shanghai 200092, P. R. China, [email protected] Xiaoling Sun Department of Management Science, School of Management, Fudan University, Shanghai 200433, P. R. China, [email protected] Duan Li Department of Systems Engineering and Engineering Management, The Chinese Un...
متن کاملJoint rectangular geometric chance constrained programs
This paper discusses joint rectangular geometric chance constrained programs. When the stochastic parameters are elliptically distributed and pairwise independent, we present a reformulation of the joint rectangular geometric chance constrained programs. As the reformulation is not convex, we propose new convex approximations based on variable transformation together with piecewise linear appro...
متن کاملOn Second-order Properties of the Moreau-Yosida Regularization for Constrained Nonsmooth Convex Programs
In this paper, we attempt to investigate a class of constrained nonsmooth convex optimization problems, that is, piecewise C2 convex objectives with smooth convex inequality constraints. By using the Moreau-Yosida regularization, we convert these problems into unconstrained smooth convex programs. Then, we investigate the second-order properties of the Moreau-Yosida regularization η. By introdu...
متن کاملSequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach
When there is parameter uncertainty in the constraints of a convex optimization problem, it is natural to formulate the problem as a joint chance constrained program (JCCP) which requires that all constraints be satisfied simultaneously with a given large probability. In this paper, we propose to solve the JCCP by a sequence of convex approximations. We show that the solutions of the sequence o...
متن کاملA New Class of Piecewise-linear Approximation Methods for Mathematical Programming
We propose a new approach for solving general constrained nonlinear maximization problems with concave objective functions. Neither the objective functions need to be differentiable nor the constraints need to be linear, convex, differentiable or separable. Stochastic programming problems have been shown to have deterministic nonlinear equivalents. The methods proposed are particularly useful f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014